首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61555篇
  免费   2022篇
  国内免费   1538篇
  2023年   377篇
  2022年   557篇
  2021年   1695篇
  2020年   811篇
  2019年   1045篇
  2018年   865篇
  2017年   602篇
  2016年   1157篇
  2015年   3061篇
  2014年   6291篇
  2013年   5417篇
  2012年   4602篇
  2011年   5222篇
  2010年   3655篇
  2009年   3102篇
  2008年   3160篇
  2007年   3460篇
  2006年   2138篇
  2005年   1813篇
  2004年   1049篇
  2003年   814篇
  2002年   732篇
  2001年   520篇
  2000年   476篇
  1999年   484篇
  1998年   425篇
  1997年   343篇
  1996年   413篇
  1995年   544篇
  1994年   459篇
  1993年   510篇
  1992年   462篇
  1991年   469篇
  1990年   412篇
  1989年   428篇
  1988年   426篇
  1987年   350篇
  1986年   308篇
  1985年   548篇
  1984年   845篇
  1983年   540篇
  1982年   721篇
  1981年   714篇
  1980年   525篇
  1979年   530篇
  1978年   328篇
  1977年   347篇
  1976年   315篇
  1974年   231篇
  1973年   238篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
Summary Two previously identified forms of macrophage were investigated in primary cultures of cerebral cortical cells. Dynamic features were revealed through time-lapse video recording and aspects of macrophage function were assessed. The two cell forms were shown to be different pre-mitotic stages of a single cell type. The cell cycle for these cells involved an initial large, flat, quiescent cell which retracted to yield a slightly rounded form with numerous processes. This latter form lost processes and developed profuse filopodia as it became very rounded just prior to division; both resulting daughter cells then regained the initial large flat appearance. These cells possessed several properties of macrophages, including phagocytosis, nucleoside diphosphatase enzyme, and CR3 receptors. These properties were transient, expressed just before and after mitosis, but subsequently down-regulated in the flat daughter cells. Because of this feature, it was difficult to determine the exact size of this cell population; however, the observed rate of proliferation suggests it may be substantial. It is suggested that these cells correspond to non-microglial macrophages of brain tissue and, because of their significant down-regulation, they may be difficult to detect. This may be important in studies of brain accessory immune cells in tissue culture.  相似文献   
42.
43.
The frog skin host-defense peptide tigerinin-1R (RVCSAIPLPICH.NH2) is insulinotropic both in vitro and in vivo. This study investigates the effects on insulin release and cytotoxicity of changes in cationicity and hydrophobicity produced by selected substitutions of amino acids by l-arginine, l-lysine and l-tryptophan. The [A5W], [L8W] and [I10W] analogs produced a significant (P < 0.01) increase in the rate of insulin release from BRIN-BD11 rat clonal β cells at concentration of 0.01 nM compared with 0.1 nM for tigerinin-1R. The increase in the rate of insulin release produced by a 3 μM concentration of the [S4R], [H12K], and [I10W] analogs from both BRIN-BD11 cells and mouse islets was significantly greater (P < 0.05) than that produced by tigerinin-1R. No peptide stimulated the release of lactate dehydrogenase at concentrations up to 3 μM indicating that plasma membrane integrity had been preserved. [A5W] tigerinin-1R was the only analog tested that showed cytotoxic activity against human erythrocytes (LC50 = 265 ± 16 μM) and inhibited growth of Escherichia coli (MIC = 500 μM) and Staphylococcus aureus (MIC = 250 μM). The circular dichroism spectra of tigerinin-1R and [A5W] tigerinin-1R indicate that the peptides adopt a mixture of β-sheet, random coil and reverse β-turn conformations in 50% trifluoroethanol/water and methanol/water. Administration of [S4R] tigerinin-1R (75 nmol/kg body weight) to high-fat fed mice with insulin resistance significantly (P < 0.05) enhanced insulin release and improved glucose tolerance over a 60 min period following an intraperitoneal glucose load. The study supports the claim that tigerinin-1R shows potential for development into novel therapeutic agents for treatment of type 2 diabetes mellitus.  相似文献   
44.
Liver plasma membranes prepared from genetically diabetic (db/db) mice expressed levels of Gi α-2, Gi α-3 and G-protein β-subunits that were reduced by some 75, 63 and 73% compared with levels seen in membranes from lean animals. In contrast, there were no significant differences in the expression of the 42 and 45 kDa forms of Gs α-subunits. Pertussis toxin-catalysed ADP-ribosylation of membranes from lean animals identified a single 41 kDa band whose labelling was reduced by some 86% in membranes from diabetic animals. Cholera toxin-catalysed ADP-ribosylation identified two forms of Gs α-subunits whose labelling was about 4-fold greater in membranes from diabetic animals compared with those from lean animals. Maximal stimulations of adenylyl cyclase activity by forskolin (100 μM), GTP (100 μM), p[NH]ppG (100 μM), NaF (10 mM) and glucagon (10 μM) were similar in membranes from lean and diabetic animals, whereas stimulation by isoprenaline (100 μM) was lower by about 22%. Lower concentrations (EC50-60 nM) of p[NH]ppG were needed to activate adenylyl cyclase in membranes from diabetic animals compared to those from lean animals (EC50-158 nM). As well as causing activation, p[NH]ppG was capable of eliciting a pertussis toxin-sensitive inhibitory effect upon forskolin-stimulated adenylyl cyclase activity in membranes from both lean and diabetic animals. However, maximal inhibition of adenylyl cyclase activity in membranes from diabetic animals was reduced to around 60% of that found using membranes from lean animals. Pertussis toxin-treatment in vivo enhanced maximal stimulation of adenylyl cyclase by glucagon, isoprenaline and p[NH]ppG through a process suggested to be mediated by the abolition of functional Gi activity. The lower levels of expression of G-protein β-subunits, in membranes from diabetic compared with lean animals, is suggested to perturb the equilibria between holomeric and dissociated G-protein subunits. We suggest that this may explain both the enhanced sensitivity of adenylyl cyclase to stimulation by p[NH]ppG in membranes from diabetic animals and the altered ability of pertussis and cholera toxins to catalyse the ADP-ribosylation of G-proteins in membranes from these two animals.  相似文献   
45.
Plantlets of Chrysanthemum x morifolium were grown from nodal sections in cellulose plugs which were saturated with liquid rooting medium containing 1 mg l–1 paclobutrazol in culture vessels that maintained relative humidities (RH) of 100%, 96% and 94%, respectively. After 4 weeks, plantlets were transferred to compost and exposed to 40% RH at 29°C. Marked differences in wilting were observed that were directly related to the RH of the vessel in which the plantlets had been grown. Thicker leaves, improved closure of stomata and increased thickness of the cuticle were associated with increased resistance to wilting. Reduced RH of the culture vessel was also associated with significantly higher concentrations of chlorophyll in the leaves.  相似文献   
46.
47.
Second messengers are small rapidly diffusing molecules or ions that relay signals between receptors and effector proteins to produce a physiological effect. Lipid messengers constitute one of the four major classes of second messengers. The hydrolysis of two main classes of lipids, glycerophospholipids and sphingolipids, generate parallel profiles of lipid second messengers: phosphatidic acid (PA), diacylglycerol (DAG), and lysophosphatidic acid versus ceramide, ceramide-1-phosphate, sphingosine, and sphingosine-1-phosphate, respectively. In this review, we examine the mechanisms by which these lipid second messengers modulate aldosterone production at multiple levels. Aldosterone is a mineralocorticoid hormone responsible for maintaining fluid volume, electrolyte balance, and blood pressure homeostasis. Primary aldosteronism is a frequent endocrine cause of secondary hypertension. A thorough understanding of the signaling events regulating aldosterone biosynthesis may lead to the identification of novel therapeutic targets. The cumulative evidence in this literature emphasizes the critical roles of PA, DAG, and sphingolipid metabolites in aldosterone synthesis and secretion. However, it also highlights the gaps in our knowledge, such as the preference for phospholipase D-generated PA or DAG, as well as the need for further investigation to elucidate the precise mechanisms by which these lipid second messengers regulate optimal aldosterone production.  相似文献   
48.
Abdominal aortic aneurysms (AAA) are progressive dilatations of infra-renal aorta causing structural weakening rendering the aorta prone to rupture. AAA can be potentially stabilized by inhibiting inflammatory enzymes such as matrix metalloproteinases (MMP); however, active regression of AAA is not possible without new elastic fiber regeneration. Here we report the elastogenic benefit of direct delivery of polyphenols such as pentagalloyl glucose (PGG), epigallocatechin gallate (EGCG), and catechin, to smooth muscle cells obtained either from healthy or from aneurysmal rat aorta. Addition of 10 μg/ml PGG and ECGC induce elastin synthesis, organization, and crosslinking while catechin does not. Our results indicate that polyphenols bind to monomeric tropoelastin and enhance coacervation, aid in crosslinking of elastin by increasing lysyl oxidase (LOX) synthesis, and by blocking MMP-2 activity. Thus, polyphenol treatments leads to increased mature elastin fibers synthesis without increasing the production of intracellular tropoelastin.  相似文献   
49.
Clinical research is currently exploring the validity of the anti-tumor candidate 3-bromopyruvate (3-BP) as a novel treatment for several types of cancer. However, recent publications have overlooked rarely-cited earlier work about the instability of 3-BP and its decay to 3-hydroxypyruvate (3-HP) which have obvious implications for its mechanism of action against tumors, how it is administered, and for precautions when preparing solutions of 3-BP. This study found the first-order decay rate of 3-BP at physiological temperature and pH has a half-life of only 77 min. Lower buffer pH decreases the decay rate, while choice of buffer and concentration do not affect it. A method for preparing more stable solutions is also reported.  相似文献   
50.
Despite similarities of cellular membranes in all eukaryotes, every compartment displays characteristic and often unique features which are important for the functions of the specific organelles. In the present study, we biochemically characterized the plasma membrane of the methylotrophic yeast Pichia pastoris with emphasis on the lipids which form the matrix of this compartment. Prerequisite for this effort was the design of a standardized and reliable isolation protocol of the plasma membrane at high purity. Analysis of isolated plasma membrane samples from P. pastoris revealed an increase of phosphatidylserine and a decrease of phosphatidylcholine compared to bulk membranes. The amount of saturated fatty acids in the plasma membrane was higher than in total cell extracts. Ergosterol, the final product of the yeast sterol biosynthetic pathway, was found to be enriched in plasma membrane fractions, although markedly lower than in Saccharomyces cerevisiae. A further characteristic feature of the plasma membrane from P. pastoris was the enrichment of inositol phosphorylceramides over neutral sphingolipids, which accumulated in internal membranes. The detailed analysis of the P. pastoris plasma membrane is discussed in the light of cell biological features of this microorganism especially as a microbial cell factory for heterologous protein production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号